

COURSE SYLLABUS

General information

Course title:	Fundamentals of electrical engineering I
ISVU course code:	38908
Course instructor:	Filip Žugčić mag. ing. el.
Course assistant:	dr. sc. Anamarija Kirin
Study programme and specialization in which the course is taught:	Study of mechatronics
ECTS credits:	5
Semester of the course execution:	I.
Exam prerequisites:	-
Course objectives:	The objective of the course is to introduce students to the basics of electrostatics, basic methods of calculating the electrical DC networks

Course structure

Teaching mode	Number of contact hours per semester:	Student's requirements per teaching mode
Lectures:	30	attendence 70%
Exercises (auditory, linguistics):	20	attendence 70%
Exercises (laboratory, practical):	10	attendence 100%
Field work:		
Other:		
TOTAL:	60	

Monitoring of students' work and knowledge evaluation during the course

OUTCOM	ES	Colloquium 1	Colloquium 2	Verbal test	Total	Pass	Time frame for the recognition of the outcome
Outcome 1	Define the basic physical quantities of electricity (charge, electric field, energy, electric potential, capacity)			10%	10%	5%	Until the end of the academic year
Outcome 2	Apply the basic laws of electrostatics (Coulomb's law, Gauss's law)	20%			20%	10%	Until the end of the academic year
Outcome 3	Analyze capacitance as an element of a circuit	20%			20%	10%	Until the end of the academic year
Outcome 4	Describe the basic electrical quantities of a simple circuit (charge movement in a conductor, electrical resistance, sources			10%	10%	5%	Until the end of the academic year

COURSE SYLLABUS

	of electrical energy)						
Outcome 5	Explain and apply the basic laws of electrical engineering (Ohm's law, Kirchoff's laws)		20%		20%	10%	Until the end of the academic year
Outcome 6	Solve electrical network problems using Thevenin/Norton's theorem, the method of contour currents and node voltages		20%		20%	10%	Until the end of the academic year
Total % gr	ade points	40	40	20	100	50	
Share in E	ECTS	2	2	1	5		

Knowledge evaluation on exams

Exam pre	requisites					
OUTCOMI	ES		Written exam	Oral exam	Total	Pass
Outcome 1	Define the basic phy of electricity	sical quantities		10%	10%	5%
Outcome 2	Apply the basic laws of electrostatics		20%		20%	10%
Outcome 3	Analyze capacitance a circuit	as an element of	20%		20%	10%
Outcome 4	Describe the basic el quantities of a simpl	ectrical e circuit		10%	10%	5%
Outcome 5	Explain and apply th electrical engineerin	e basic laws of g	20%		20%	10%
Outcome 6	Solve electrical netw	ork problems	20%		20%	10%
Total % of grade points		80	20	100	50	
Share in E	CTS		4	1	5	

Review of units per week with associated learning outcomes

Wook	Lecture course content and learning	Outco	Exercises course content and	Outco
WEEK	outcomes:	me	learning outcomes:	me
1	Physical basics of electricity	01	Overview of basic concepts of	01
1.	Physical basics of electricity		electricity with concrete examples	
2	Electric field	01	Analysis of electric field problems	01
۷.			using examples	
3.	Coulomb's law	02	Application of Coulomb's law	02
4.	Gauss's law	02	Solving tasks using Gauss's law	02
F	Potential and voltage	01, 03	Solving potential and voltage	01, 03
э.			problems	
6	Canacitara	01, 03	Solving networks with capacitors and	01, 03
0.	Capacitors		examples of capacitor design	
		03	Analysis of the problem of generation	03
7.	Electricity		of current and passage of current	
			through the conductor	

8.	Ohm's law	04	Application of Ohm's law for a simple electric circuit	04
9.	Kirchoff's laws	04	Application of Kirchoff's laws on electrical networks	04
10.	Basic electrical measurements	05	Carrying out the procedure of measuring voltage, current and power with measuring instruments	05
11.	Analysis of electrical networks	04	Solving tasks using learned methods for solving simple electrical networks	04
12.	Method of contour currents	06	Solving electrical networks using the method of contour currents	06
13.	Thevenin's and Norton's theorem	06	Solving electrical networks using Thevenin's and Norton's theorem	06
14.	Node voltage method	06	Solving electrical networks using the nodal voltage method	06
15.	The optimal procedure for solving complex electrical networks	06	Solving complex electrical networks using several different methods	06

COURSE SYLLABUS

References (compulsory / additional)

B.Kuzmanović: Osnove elektrotehnike I, ISBN:953-197-128-5, Element, B.Kuzmanović: Zbirka zadataka i pitanja iz Osnove elektrotehnike I, ISBN:953-197-664-3, Element, 2010