

Versuchs- und Lehranstalt für Brauerei in Berlin (VLB) e.V. Flavor Stability: Unlocking the Secret to Lasting Beer Taste

Jan Biering

Head of Research Institute for Beer and Beverage Production (FIBGP)

Research and Teaching Institute for Brewing in Berlin (VLB)

VLB – Serving the brewing industry for over 140 years

- + Founded by the brewing and malting industry in 1883
- + The VLB is an **independent members' association** with around 370 members (mostly companies)
- Aim of the registered association is to promote science and education in the brewing and beverage industry and in biotechnology
- + The VLB receives no regular public funding
- Long-term co-operation with the Technische Universität Berlin in the field of brewing science
- + About 135 employees
- + Located in Berlin

VLB co-founder Privy Councillor Prof. Dr. Max Delbrück (1850-1919)

Transport pool of the VLB Hochschulbrauerei around 1930

- Microbiological stability: Absence of any critical germ in the beer, e. g. spoilage bacteria
- Non-biological stability: Resistance of a beer against haze formation that is not originated from microbiological contaminations
- Flavor stability: Ability of the beer to keep its fresh, pure flavor as long as possible after filling; stability against the formation of stale flavor carbonyls
- Foam stability (Head retention): Ability of the beer to keep the head as long as possible

Flavour Change during Staling

VLB

BERLIN

// + \

Flavour Change during Staling

VLB Berlin / FIBGP

Any unauthorized use, such as distributing, copying, changing or reprinting, is not permitted Zufall, EBC 2005

Flavour of Some Carbonyls

Compound	Threshold [ppm]	Description
Acetaldehyde	25	Green leaves, fruity
Furfural	150	Paper, husk
n-Hexanal	0.35	Bitter, vinous
2 <i>E</i> -Hexenal	0.6	Bitter, astringent, green leaves
3Z-Hexenal	0.02	Green leaves, freshly cut grass
5-Methylfurfural	20	Almonds, burnt/phenolic
n-Heptanal	0.075	Vinous, bitter, very unpleasant
n-Octanal	0.04	Orange peel, bitter, vinous
2 <i>E</i> -Octenal	0.0002	Bitter, stale
2 <i>E</i> -Nonenal	0.00011	Papery (cardboard), oxidized, stale
2 <i>E</i> ,4 <i>E</i> -Nonadienal	0.0005	Oily, rancid
2 <i>E</i> -Decenal	0.001	Bitter, rancid, stale
2 <i>E</i> ,4 <i>E</i> -Decadienal	0.0003	Oily, deep-fried

Meilgaard (1975)

Possible Pathways for Flavour Change

- 1. Oxidation of higher alcohols
- 2. Oxidative degradation of isohumulones
- 3. Maillard reaction and Strecker degradation
- 4. Aldol condensation
- 5. Secondary autoxidation of aldehydes
- 6. Autoxidation of polyunsaturated fatty acids
- 7. Enyzmatic oxidation of polyunsaturated fatty acids by lipoxygenases
- 8. Photooxidation of polyunsaturated fatty acids
- Oxidative and non-oxidative staling
- Oxygen strongest influence on staling

"Über den Verlauf der Alterung <mark>entstehen</mark> zum einen in chemischen Reaktionen (wie z.B. Maillard-Reaktion, Strecker-Reaktion, Lipidoxidation) Aromastoffe, die das Gesamtaroma des Bieres negativ beeinflussen [3, 4], <mark>zum anderen werden positive Stoffe <u>abgebaut</u> und so den sensorischen Alterungseindruck maskierende Effekte vermindert (z.B. Acetatester) [5]."</mark>

Lehnhardt, F.: Aussagekraft der forcierten Alterung, BRAUWELT 21-22, 2019, S. 607-610

Pathways of Flavour Change /

Figure 1. Overview of selected aging-relevant reactions and their key reactants, precursors, and aging indicators.

Source: Nobis et al.: The Influence of proteolytic Malt Modification on the Ageing Potential of final Wort (Foods **2021**, 10, 2320. https://doi.org/10.3390/foods10102320)

VLB Berlin / FIBGP

Any unauthorized use, such as distributing, copying, changing or reprinting, is not permitted

VLB BERLIN

Influencing factors for flavour change

+ Oxidation

→ high oxygen content in wort and beer

+ Thermal influences

Long boiling times, pasteurisation, high storage temperatures

+ FAN

- Increase via Strecker Degradation
- Influence of light (wave length of 350-500nm)
 light-struck flavour

Influence FAN

FORMATION OF ALDEHYDES

Strecker degradation

Streckeraldehydes during storage

Influence TBI

Thermal Stress

TBI (Thiobarbituric Acid Index)- heat indicator

- thermal stress to which malt, wort, and beer are exposed
- photometric measurement of yellowing after the reaction with an acetic acid/thiobarbituric acid solution.
- reaction indicates the presence of Maillard reaction products, as well as 5-hydroxy-methylfurfural (HMF)
- + Reduce possible boiling and heating times
 + gentle boiling, hot holding time, pasteurisation etc.

Influence Oxygen

Oxidation is intensified by

+ Temperature+ pH

+ But also co-factors like iron (Fe) and copper (Cu) – uptake from Kieselguhr

Technological Approaches

Raw Materials

- low content of FAN \rightarrow low level of Strecker aldehydes
- low LOX-activity \rightarrow low lipid degradation
- low kilning temperatures \rightarrow low thermal load

Milling

- long storage of grist \rightarrow lipid oxidation
- mills run with inert gas (CO₂ / N₂)

Mashing

- mashing-in from below \rightarrow low oxygen uptake
- gentle agitation \rightarrow low oxygen uptake
- mashing-in >55 °C \rightarrow lower FAN, lower LOX-activity

Technological Approaches

Wort Boiling & Whirlpool

• low thermal load \rightarrow low level of Strecker aldehydes

Fermentation

• promotion of SO_2 formation \rightarrow protection from lipid oxidation

Maturation/Filtration

- pressurizing and emptying of tanks with $CO_2 \rightarrow Iow$ oxygen uptake
- CO_2 gassing of kieselguhr dosing vessel \rightarrow low oxygen uptake

Filling

- pre-evacuation/purging and pressurizing with $CO_2 \rightarrow low$ oxygen uptake
- bottles: high pressure injection \rightarrow low oxygen uptake
- cans: bubble breaker and sub lid gassing \rightarrow low oxygen uptake

Phases of SO₂- Formation

SO₂ -Content depending on Aeration Strategy

VLB Berlin / FIBGP

Pratical part- consulting strategies

Measurment of TPO

VLB Berlin / FIBGP

Oxygen in bottle filling

- **TPO in bottles**
 - Air in head space after filling
 - High Pressure Injection (HPI)
- 0,5 I NRW:
 - brim full: 520 ml
 - filling volume: 500 ml
 ⇒ head space: 20 ml
- Oxygen at 20 °C and 1013 hPa:
 - 1 ml contains 0,21 ml $O_2 = 0,28$ mg O_2 /ml air
- 20 ml head space * 0,28 mg O_2 /ml air \Rightarrow 5,6 mg O_2 in head space
- Worst case scenario: >11,2 mg/l TPO

ca. 11 000 bis 12 000 ppb !!!

Oxygen in bottle filling

Oxygen DO	
BBT	25 ppb
First bottle	1020 ppb
After 1000 bottles	1069 ppb

VLB Berlin / FIBGP

able 4: TPO after HPI adjustment

Sample #	1	2	3	4	5
TPO [ppb]	255	140	128	95	106

Adjustment of HPI

Oxygen in can filling

Cans:

- No vacuum, only CO₂ rinsing
- Bubble Breaker

Source: VLB Berlin

TPO influence temperature

Sample #	Before Pasteurizer		After Pasteurizer	
	1	2	3	4
TPO [ppb]	281	323	87	72
TPO Avg. [ppb]	302		80	

VLB

BERLIN

Degradation of oxygen during storage time

Tab. 4: change in measured oxygen content during storage time in BBT

Oxygen after	BBT 7
Fresh filtered	85 ppb
After 24 h	27 ppb
After 48 h	11 ppb

Oxygen –step control

+ Target < 100ppb in final product (total value)

Anti- Oxidants

Addition of anti-oxidants

- + Ascorbic acid
- + Sulfite products
- + Often in combination
- + Captures oxygen but...

ANTIOXIDANTS

Standard dosages

Ascorbic acid	[ppm]	20 - 80
Isona D	[ppm]	20 - 40
Glucose-oxydase	[ppm]	1
Sulfites (e. g. potassium metabisulfite ($K_2S_2O_5$))		
P.M.S.	[ppm]	10 - 30
Sodium metabisulfite	[ppm]	10 - 30

Crown Corks - Permeation

INTERIOR PLASTIC LINER

Oxygen Scavenger

A special liner that absorbs the oxygen remaining in the bottle neck finish, decreasing the beer or beverage oxidation. Oxygen scavenger liners provide extra freshness, better taste and extended shelf life. That's why they are strongly preferred by premium beer brands and craft breweries.

INTERIOR PLASTIC LINER

Oxygen Barrier

A liner profile that actually acts as a barrier to any external contamination such as odor and oxygen ingress into the glass bottle.

VLB Berlin / FIBGP

Crown cork - permeation

CC (KK) 1 – 3 have Scavengers in Compound

Thank you for your attention!

VLB Berlin

Research Institute for Beer and Beverage Production (FIBGP) Jan Biering biering@vlb-berlin.org www.vlb-berlin.org

VLB Berlin / FIBGP

Any unauthorized use, such as distributing, copying, changing or reprinting, is not permitted