Maltose negative yeast strains in non-alcoholic beer production

Karlovac – With Brewers for Brewers 2024

Introduction

Non-Alcoholic Beer:

• Defined as beer that is <0.05 - 0.5% ABV (dependent on your region)

Low Alcoholic Beer

• Defined as 0.5-1.5% ABV

Non-alcoholic beers can be made in different ways

Two broad Production approaches

PHYSICAL

Alcohol Removal

Thermal Vacuum rectification Thin film evaporator

Membrane Dialysis Reverse osmosis

BIOLOGICAL

Restricted Ethanol Formation

High temp mashing Arrested/Limited fermentation Specialist yeast strain Co-fermentation with bacteria A combination of the above

Challenges – Physical

Costly equipment

Significant process optimization

Flavor loss by heating

Energy intensive

Thermal damage

Other licensing may be required

In depth justification of high temperature mashing

Understand the importance of wort composition in recipe design

Understand mash enzymes and modify your fermentability

Some experimental work with high mashing technique

Mash temperature Trials

- Idea is to inactivate beta amylase while keeping alpha amylase active
- 5 different single mash temperatures
- Four time periods

LALLE AND BREVING 5 Plato wort

AB Vickers Trials (mash bath + iodine)

Initial mashing regime

lodine test

		Mash Temperature ⁰ C					
		74	78	82	86	95	
nin)	60	S1	S5	S9	S13	S17	
ne (r	70	S2	S6	S10	S14	S18	
h Tir	80	S3	S7	S11	S15	S19	
Mas	90	S4	S8	S12	S16	S20	

Mascoma analysis (size exclusion chromatography)

	1155	0	SEC Column				
	and so the		нмw	DP3	DP2	DP1	allylle
		SP-1		4.947	14.304	2.386	VELOT
71 -	\prec	SP-2		5.111	15.069	2.328	Too much
14		SP-3		5.263	15.503	2.35	fermentable sugar
		SP-4		4.959	14.603	1.867	
		SP-5		3.764	11.331		
78 -	\prec	SP-6	4.96	3.603	10.64	1.368	Good
10		SP-7		3.683	10.594	1.431	
		SP-8	3.854	3./39	10.692	1.442	potential
	1	SP-9	9.75				
82 -	\prec	SP-10	11 102	2.7C	9.172		Good
02		SP-11	10 913	3.35	9.004		
		SP-13	16.502	2.029	5.255		potential
6		SP-14	16.488				
86 -	$\boldsymbol{\leq}$	SP-15	15.142				Possibly too
		SP-16	17.358				
		SP-17	15.209		9.839		much starch
95 _		SP-18	15.694		9.961		Too much starch +
IIIA 10		SP-19	15.381		9.266		some fermentable
		SP-20	14.288	2.709	9.67	1.034	sugar
BREWING							LALLEMAND

Montreal SEC data

Challenges – combined biological approaches

High Temperature Mashing

- Creates tricky worts
- Risk alcohol content will be too high

Arrested Fermentation (including cold contact)

- Requires close monitoring
- Worty flavours
- Risk of over fermentation

Specialist Yeast

Maltose negative

- Most are not saccharomyces
- Almost exclusively wild yeast or food spoilage organisms
- POF+ and sulphur producing
- Poor pH reduction

Maltotriose negative

• Requires high mash temperatures

The Project: making a better nalab strain

Desired Traits:

- Fermentation based solution
- Clean flavour profile
- No POF
- Reduced worty flavors
- Low diacetyl prodcucer

- Consistent performance
- Simple process
- Versatility for different styles

Introducing Lalbrew Iona

LalBrew[®]
PREMIUM SERIES
LALLEMAND

LONA

LOW ALCOHOL HYBRID ALE YEAST

Saccharomyces cerevisiae

Lalbrew LoNaTM Overview

- non-GMO breeding methods were used to select a strain that does not consume maltose or maltotriose resulting in very low attenuation.
- LoNa[™] is the first hybrid Saccharomyces cerevisiae strain that does not ferment maltose or maltotriose
- LoNa[™] does not produce H2S and uses a large proportion of staling aldehydes resulting in a low or non-alcoholic beer that tastes more like beer

Breeding Schematic

Pitch Rate: 50-100g/hl

Fermentation Temperature: 20-25°C (68-77°F)

Attenuation: 16-20% (lower with high mashing conditions)

Flocculation: Medium

Fermentation Completed: 2-3 days

Repitchability: Not repitchable

Flavour characteristics

- Has a clean and neutral aroma
- Does not produce H2S and is POF-
- Reduction in aldehydes lends for reduced wort character, similar to a traditional beer fermentation

Fermentation Performance and sugar assimilation

Esters and Fusel Alcohols

LALLEMAND BREWING

Isoamyl acetate (ppm)

LoNa[™] produces a
higher proportion of
"beer-like" esters and
aromas compared to
the reference
Saccharomycodes
ludwigii

•

LALLEMAND

Aldehydes

- Low and no alcohol beers suffer from flavor defects often described as sweet or worty.
- These flavors originate from flavor active aldehydes which are created in the mashing and boiling processes. The most abundant are 3-methyl butanal, 2methylbutanal and methional.
- Ordinarily these aldehydes are reduced to their primary alcohols through the activity of yeast during fermentation, but in a limited or restricted fermentation this reduction may not happen to the same degree.
- LoNa[™] exhibits good aldehyde reduction compared to other maltose negative LALLEMAND BREWING Strains

Utilization of Staling Aldehyde

- Low alcohol beers are known to have a high level of staling aldehydes due to the limited nature of fermentation.
- LoNa[™] strain utilize a higher proportion of aldehydes when compared to the reference maltose negative S. ludwigii strains.
- Low Alcohol beers fermented with LoNa[™] taste fresher and cleaner than other maltose negative strains due to aldehyde reduction.

Stabilisation

Stabilisation is the most commonly overlooked factor in the production of low alcohol beers by craft brewers. If we think about regular beer it is relatively microbiologically stable and pathogens struggle to grow or survive for the following reasons.

All of these are altered or reduced to a degree in low alcohol beer

Stabilisation (how to)

Conclusion

No and low alcohol beer can be made by a variety of methods. Modern biological solutions utilising matose negative yeasts offer an easy way of producing low alcohol beer without CAPEX. However, all low and no alcohol

beers should be stabilised.