

Conference Proceedings

https://www.um.edu.mt/events/potentialofphytonutrients2025/about/

Authors:

Professor Renald Blundell, Wanning Ma and Professor Ana Sanches Silva

Edition: University of Malta

Organising Committee

Renald Blundell – University of Malta, Malta Ana Sanches Silva – University of Coimbra, Portugal

Scientific Committee

Fernando Ramos – University of Coimbra, Portugal

Iffet Irem Cankaya – Hacettepe University, Ankara, Turkey

Jolanta Sereikaite – Vilnius Gediminas Technical University, Vilnius, Lithuania

Khaoula Khwaldia – National Institute of Research and PhysicoChemical Analysis (INRAP),
Sidi Thabet, Tunisia

Omar Atrooz – Mutah University, Mutah, Jordan

Sónia Santos – University of Aveiro, Aveiro, Portugal

ISBN: 978-99909-44-98-3

Publishing and Typesetting: Malta University Distributors

https://muhc.com.mt/services/publishing/

2025

Oral Communications

OC-5

3D Printing the Future of Nutrition: Unlocking the Potential of Phytonutrients

Renald Blundell¹, Predrag Putnik²

¹Department of Physiology and Biochemistry, University of Malta

renaldblundell@gmail.com; pputnik@alumni.uconn.edu

The integration of advanced technologies into food science is reshaping how we think about nutrition, health, and sustainability. Among the most promising innovations is 3D food printing, which allows for the design of foods that are not only visually appealing but also functionally tailored to individual nutritional needs. When combined with phytonutrients, bioactive plant compounds such as flavonoids, carotenoids, and polyphenols that play critical roles in promoting health and preventing disease. 3D printing offers unprecedented opportunities for personalised nutrition and functional food development.

Phytonutrients are often difficult to incorporate effectively into the human diet due to their instability, variable bioavailability, and sensitivity to environmental factors such as light, heat, and oxidation. 3D food printing can address these challenges by enabling the precise encapsulation, layering, and controlled release of phytonutrients in food matrices. This opens pathways for developing novel functional foods, from antioxidant-enriched snacks and patient-specific recovery diets to sustainable food products that utilise plant by-products rich in beneficial compounds.

Furthermore, the junction of 3D printing with digital health technologies could foster in a new era of personalised nutrition, where meals are tailored according to age, health conditions, and genetic predispositions. At the same time, embedding phytonutrients into edible packaging materials or "smart foods" could help reduce food waste and improve safety.

This talk will highlight the current progress, challenges, and future directions at the intersection of 3D printing and phytonutrient science. By merging precision manufacturing with plant-based bioactive compounds, we can envision a future where each meal is not only a source of sustenance but also a targeted tool for enhancing human health and well-being.

ORCID ID: https://orcid.org/0000-0002-1483-0991; https://orcid.org/0000-0003-0342-6114

References:

Bebek Markovinović, A., Brdar, D., Putnik, P., Bosiljkov, T., Durgo, K., Huđek Turković, A., ... Bursać Kovačević, D. (2024). Strawberry tree fruits (Arbutus unedo L.): Bioactive composition, cellular antioxidant activity, and 3D printing of functional foods. Food Chemistry, 433. https://doi.org/10.1016/j.foodchem.2023.137287

Bebek Markovinović, A., Putnik, P., Bosiljkov, T., Kostelac, D., Frece, J., Markov, K., ... Bursać Kovačević, D. (2023). 3D Printing of Functional Strawberry Snacks: Food Design, Texture, Antioxidant Bioactive Compounds, and Microbial Stability. Antioxidants, 12(2). https://doi.org/10.3390/antiox12020436

Granato, D., Putnik, P., Kovačević, D. B., Santos, J. S., Calado, V., Rocha, R. S., ... Pomerantsev, A. (2018). Trends in Chemometrics: Food Authentication, Microbiology, and Effects of Processing. Comprehensive Reviews in Food Science and Food Safety, 17(3), 663-677. https://doi.org/10.1111/1541-4337.12341

Putnik, P., & Kovačević, D. B. (2021). Sustainable Functional Food Processing. Foods, 10(7). https://doi.org/10.3390/foods10071438

Acknowledgments

This research was made possible thanks to the support of the Exploring Sustainable Functional Foods Through 3D Food Printing, Advanced Analytical Techniques: The Role of Wine Byproducts, Chemometrics, and Food Authenticity project from Croatian-Chinese scientific and technological cooperation from University North and Karlovac University of Applied Sciences through an internal project: Nutrition Innovative three-dimensional 3D-esserts (HRID).

²Department of Food Technology, University North, Croatia